|
В категории материалов: 97 Показано материалов: 71-75 |
Страницы: « 1 2 ... 13 14 15 16 17 ... 19 20 » |
Сортировать по:
Дате ·
Названию ·
Рейтингу ·
Комментариям ·
Загрузкам ·
Просмотрам
Посвящена традиционному разделу элементарной математики— задачам на составление уравнений. Выделяются и рассматриваются классы задач, объединенные общей идеей, анализируются особенности этих классов, показываются приемы решения задач каждого класса и дается методика решения более сложных задач. Содержит много задач для самостоятельного решении с ответами.
Большое количество примеров, взятых главным образом из письменных экзаменационных работ по математике Московского государственного университета им. М. В. Ломоносова, демонстрирует разнообразие идей, лежащих в основе этих задач, являющих собой своего рода маленькие математические загадки.
2-е изд. —1980 г.
Для широкого круга читателей, любящих решать задачи вообще. Будет особенно полезна абитуриентам вузов, школьникам и учителям. |
В книге собрано более 1700 задач, предлагавшихся на вступительных экзаменах на 13 факультетах МГУ в 1984-89г. и в 1992-94г. Многие задачи сопровождаются подробными решениями, остальные снабжены ответами.
Эта книга является непосредственным продолжением книги под тем же названием, изданной издательством "Наука" в 1986 году и содержащей задачи, предлагавшиеся на вступительных экзаменах в МГУ в 1977-1983 годах.
Для преподавателей и учащихся старших классов средней школы, для руководителей и участников математических кружков.
( Всего 629стр., до 186 стр.- Задачи, далее - Ответы и Решения.) |
Великий древнегреческий мыслитель Архимед открыл оригинальный способ доказательства геометрических теорем, основанный на рассмотрении центра масс системы материальных точек. Именно таким способом им впервые была доказана теорема о пересечении медиан треугольника. Метод Архимеда был развит и превратился в эффективное и строго обоснованное средство геометрического исследования. На примере трех сотен задач в книге показаны возможности применения метода геометрии масс. Для школьников и преподавателей. |
В книге дается систематическое изложение различных геометрий — евклидовой, аффинной, проективной, эллиптической, гиперболической, бесконечномерной. Проблемы различных геометрий рассматриваются с единой точки зрения, и всюду прослеживаются единые корни различных явлений. Все геометрические объекты исследуются с позиций двойственности. Подробно изложена теория коник и квадрик, в том числе и теория коник для неевклидовых геометрий. В книге изложено много ярких геометрических фактов, решено множество красивых геометрических задач. Многочисленные рисунки помогают яснее представить себе излагаемые геометрические теоремы. В конце глав приводятся задачи и упражнения, которые позволяют использовать книгу в качестве учебника.
Книга призвана способствовать развитию геометрических исследований и совершенствованию математического образования. Для школьников, студентов, учителей математики. Первое издание книги вышло в 1997 г.
|
Книга имеет форму задачника с указаниями и подробными решениями. Все сведения, необходимые для понимания задач, изложены в тексте книги. Многие из собранных здесь задач предлагались участникам московских школьных математических кружков и олимпиад. Некоторые из задач заимствованы из серьезных научных работ, относящихся к новому разделу математики—комбинаторной геометрии.
Книга рассчитана на интересующихся математикой учащихся старших классов средней школы и студентов-математиков младших курсов. |
|
|
Статистика |
|
|
Онлайн всего: 13 Гостей: 13 Пользователей: 0 | |
|