Воскресенье, 2025-01-12, 07:06
Заволжская МОСШ №3
Приветствую Вас Гость | RSS
Меню сайта
Категории каталога
Полезности [6]
Русский язык и литература [59]
Математика [97]
Физика [22]
Химия [27]
Биология [101]
Иностранный язык [322]
География [247]
Обществознание [27]
История [330]
Информатика [587]
ИЗО, Искусствоведение [78]
Делопроизводство [2]
Экономика [18]
Физкультура [2]
Астрономия [105]
Культурология [21]
Менеджмент [7]
Естествознание [30]
Мини-чат
Наш опрос
Как Вы относитесь к спамерам?
1. Ненавижу
2. Безразлично
3. Пытаюсь бороться с ними
4. Помогаю им
5. Нравятся

[ Результаты · Архив опросов ]

Всего ответов: 12
Главная » Файлы » Учеба » Математика
 
Скачивать файлы могут только зарегистрированные пользователи, пароль (если  есть) на все скаченные файлы: peremena
Алгебра и теория чисел для математических школ. Алфутова Н.Б. Устинов А.В.
[ ] 2008-12-09, 08:25
Настоящее пособие представляет собой сборник задач по математике, предназначенный прежде всего для учеников старших классов с углубленным изучением математики, интересующихся точными науками. Он также будет полезен преподавателям математики и студентам, изучающим математику в высших учебных заведениях. Значительная часть материала может быть использована для подготовки к письменным и устным вступительным экзаменам в ВУЗы.
Основу сборника составляют задачи, к курсу алгебры, который в 1995— 2000 годах читался в школе-интернате им. А.Н.Колмогорова.
Из предисловия
Настоящее пособие представляет собой сборник задач по математике, предназначенный прежде всего для учеников старших классов, интересующихся точными науками. Он также будет полезен преподавателям математики и студентам, изучающим математику в высших учебных заведениях. Значительная часть материала может быть использована для подготовки к письменным и устным вступительным экзаменам в ВУЗы.
Основу сборника составляют задачи к курсу алгебры, который в 1995– 2000 годах читался О.А.Чалых, Н.Б.Алфутовой и А.В.Устиновым. В приложении А приведена программа этого курса. Для того, чтобы сделать содержание книги более широким и целостным, авторы включили в нее дополнительный материал, собрав и упорядочив задачи из других источников.
Математические курсы, читаемые в школе-интернате им. А.Н.Колмогорова, традиционно содержат разделы, которые можно назвать смежными. Они находятся на стыке алгебры с комбинаторикой, геометрией, теорией чисел и математическим анализом. Поэтому некоторые задачи из книги имеют к алгебре лишь косвенное отношение. Эти задачи призваны подчеркнуть связь различных разделов математики и проиллюстрировать многообразие методов.
В каждой главе кратко излагается теоретический материал, необходимый для понимания задач. В конце задачи иногда даются ссылки на задачи или литературу, которые непосредственно связаны с данным материалом.
 
Оглавление
Предисловие 3
Обозначения 5
1. Метод математической индукции 6
1. Аксиома индукции 6
2. Тождества, неравенства и делимость 7
3. Индукция в геометрии и комбинаторике 10
2. Комбинаторика 13
1. Сложить или умножить? 13
2. Принцип Дирихле 14
3. Размещения, перестановки и сочетания 16
4. Формула включений и исключений 23
5. Числа Каталана 25
3. Алгоритм Евклида и основная теорема арифметики 27
1. Простые числа 27
2. Алгоритм Евклида 29
3. Мультипликативные функции 33
4. О том, как размножаются кролики 36
5. Цепные дроби 41
4. Арифметика остатков 48
1. Четность 48
2. Делимость 51
3. Сравнения 53
4. Теоремы Ферма и Эйлера 58
5. Признаки делимости 63
6. Китайская теорема об остатках 66
5. Числа, дроби, системы счисления 70
1. Рациональные и иррациональные числа 70
2. Десятичные дроби 74
3. Двоичная и троичная системы счисления 76
6. Многочлены 83
1. Квадратный трехчлен 83
2. Алгоритм Евклида для многочленов и теорема Безу 86
3. Разложение на множители 92
4. Многочлены с кратными корнями 93
5. Теорема Виета 95
6. Интерполяционный многочлен Лагранжа 98
7. Комплексные числа 101
1. Комплексная плоскость 101
2. Преобразования комплексной плоскости 110
8. Алгебра+геометрия 113
1. Геометрия помогает алгебре 113
2. Комплексные числа и геометрия 114
3. Тригонометрия 118
9. Уравнения и системы 124
1. Уравнения третьей степени 124
2. Тригонометрические замены 128
3. Итерации 130
4. Системы линейных уравнений 139
10.Неравенства 142
1. Различные неравенства 142
2. Суммы и минимумы 145
3. Выпуклость 146
4. Симметрические неравенства 148
11.Последовательности и ряды 151
1. Конечные разности 151
2. Рекуррентные последовательности 155
3. Производящие функции 160
4. Многочлены Гаусса 166
12.Шутки и ошибки 168

Ответы, указания, решения 172
Глава 1   172
Глава 2   173
Глава 3   180
Глава 4   191
Глава 5   200
Глава 6   206
Глава 7   212
Глава 8   217
Глава 9   221
Глава 10   229
Глава 11   233
Глава 12   243
Литература 244
A. Программа курса 253
Б. Путеводитель 255
B. Формулы и числа 258
I. Греческий алфавит 258
II. Треугольник Паскаля и числа Фибоначчи 258
III. Степени, числа Каталана, факториалы 258
IV. Константы 258
V. Многочлены 259
VI. Основные тригонометрические тождества 260
VII. Таблица квадратов 262
VIII. Таблица простых чисел 262
Предметный указатель 263
Предметный указатель 263
Оглавление 267
Категория: Математика | Добавил: Администратор
Просмотров: 495 | Загрузок: 1 | Рейтинг: 0.0/0
Всего комментариев: 0
Добавлять комментарии могут только зарегистрированные пользователи.
[ Регистрация | Вход ]
Форма входа
Поиск
Друзья сайта

Статистика

Онлайн всего: 8
Гостей: 8
Пользователей: 0
155410 Ивановская область г. Заволжск, ул. Школьная 1; тел: 84933321652 E-mail: zavolgschool@mail.ru © 2025